Antibacterial and antioxidant activity of endophytic fungi extracts isolated from the petiole of sungkai plant (Peronema canescens)

##plugins.themes.bootstrap3.article.main##

RIAN OKTIANSYAH
ELFITA
HARY WIDJAJANTI
SALNI
ARUM SETIAWAN

Abstract

Abstract. Oktiansyah R, Elfita, Widjajanti H, Salni, Setiawan A. 2023. Antibacterial and antioxidant activity of endophytic fungi extracts isolated from the petiole of sungkai plant (Peronema canescens). Biodiversitas 24: 6516-6526. Indonesia has a diverse number of medicinal plants that are very helpful in preventing infectious diseases. Sungkai (Peronema canescens) is a medicinal plant of the family Verbenaceae that is often used and found in Indonesia. Its leaves possessed antibacterial and antioxidant properties that boost immunity and lessen the signs of infectious disorders. This study explored the types of endophytic fungi found in sungkai petioles and examined their relationship to previously reported sungkai leaf endophytic fungal isolates and spectrum of compounds contained them. Endophytic fungal were isolated from fresh leaf petioles of host plants, and their morphological and molecular characteristics were determined. Endophytic fungal extracts were tested for antibacterial and antioxidant properties. Utilizing the paper disk diffusion technique, the antibacterial characteristics were ascertained, while the DPPH method was used to determine antioxidant activity. Molecular identification was carried out on the fungal isolate with the most potential, and chemical compounds were isolated using column chromatography. The structures of the compounds were determined using spectroscopy, including 1D and 2D NMR. Eight endophytic fungal isolates were obtained from sungkai leaf stalks (RA1-RA8) of various species of the genus Trichoderma. Differences in the diversity of endophytic fungi found in leaf stalks and endophytic fungi from leaves were identified. RA1 showed the strongest antibacterial and antioxidant activity and was molecularly identified as T. harzianum. Spectroscopic analysis showed that the pure compound contained within was 9-hydroxy-7-methylenebenzo[c]oxepin-3(7H)-one (1), which had never previously been found in sungkai plants and endophytic fungi. The antibacterial activity of Compound 1 is in the strong category (MIC = 64 µg/mL) but is not active as an antioxidant. In terms of producing medicinal ingredients from endophytic fungi, T. harzianum in extract form has more potential to be developed.

##plugins.themes.bootstrap3.article.details##

References
Abbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009. https://doi.org/10.1016/j.sjbs.2020.11.032
Adamczak, A., O?arowski, M., & Karpi?ski, T. M. (2020). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine, 9(1). https://doi.org/10.3390/jcm9010109
Aini, K., Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A. R. (2022). Antibacterial activity of endophytic fungi isolated from the stem bark of jambu mawar (Syzygium jambos). Biodiversitas, 23(1), 521–532. https://doi.org/10.13057/biodiv/d230156
Alagawany, M., Attia, Y. A., Farag, M. R., Elnesr, S. S., Nagadi, S. A., Shafi, M. E., Khafaga, A. F., Ohran, H., Alaqil, A. A., & Abd El-Hack, M. E. (2021). The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Frontiers in Veterinary Science, 7(January), 1–17. https://doi.org/10.3389/fvets.2020.570748
Alam, B., L?, J., G?, Q., Khan, M. A., G?ng, J., Mehmood, S., Yuán, Y., & G?ng, W. (2021). Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? Frontiers in Plant Science, 12(December), 1–24. https://doi.org/10.3389/fpls.2021.791033
Alhazmi, H. A., Najmi, A., Javed, S. A., Sultana, S., Al Bratty, M., Makeen, H. A., Meraya, A. M., Ahsan, W., Mohan, S., Taha, M. M. E., & Khalid, A. (2021). Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Frontiers in Immunology, 12(May), 1–24. https://doi.org/10.3389/fimmu.2021.637553
Almanaa, T. N., Rabie, G., El-Mekkawy, R. M., Yassin, M. A., Saleh, N., & El-Gazzar, N. (2022). Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. Food Science and Technology (Brazil), 42, 1–10. https://doi.org/10.1590/fst.01421
Alsharari, S. S., Galal, F. H., & Seufi, A. M. (2022). Composition and Diversity of the Culturable Endophytic Community of Six Stress-Tolerant Dessert Plants Grown in Stressful Soil in a Hot Dry Desert Region. Journal of Fungi, 8(3). https://doi.org/10.3390/jof8030241
Antabe, R., & Ziegler, B. R. (2020). Diseases, Emerging and Infectious. International Encyclopedia of Human Geography, January, 389–391. https://doi.org/10.1016/b978-0-08-102295-5.10439-1
Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/molecules27041326
Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39–55. https://doi.org/10.1080/21501203.2021.1945699
Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10(MAR), 1–12. https://doi.org/10.3389/fimmu.2019.00549
Burel, C., Kala, A., & Purevdorj-Gage, L. (2021). Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Letters in Applied Microbiology, 72(3), 332–340. https://doi.org/10.1111/lam.13420
Castro, P., Parada, R., Corrial, C., Mendoza, L., & Cotoras, M. (2022). Endophytic Fungi Isolated from Baccharis linearis and Echinopsis chiloensis with Antifungal Activity against Botrytis cinerea.
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2020). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiology, 149(3), 1579–1592. https://doi.org/10.1104/pp.108.130369
Cui, X. X., Wang, L., Fang, H. Y., Zheng, Y. G., & Su, C. Y. (2022). The cultivable endophytic fungal community of Scutellaria baicalensis: diversity and relevance to flavonoid production by the host. Plant Signaling and Behavior, 17(1), 1–8. https://doi.org/10.1080/15592324.2022.2068834
Deshmukh, S. K., Dufossé, L., Chhipa, H., Saxena, S., Mahajan, G. B., & Gupta, M. K. (2022). Fungal Endophytes: A Potential Source of Antibacterial Compounds. In Journal of Fungi (Vol. 8, Issue 2). https://doi.org/10.3390/jof8020164
Dewage, E., Sandun, N., Nam, K., Huang, X., & Ahn, D. U. (2022). Mechanisms , and Applications?: A Review.
Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 9(11), 1–38. https://doi.org/10.3390/antiox9111123
Dillasamola, D., Aldi, Y., Wahyuni, F. S., Rita, R. S., Dachriyanus, Umar, S., & Rivai, H. (2021). Study of Sungkai (Peronema canescens, Jack) leaf extract activity as an immunostimulators with in vivo and in vitro methods. Pharmacognosy Journal, 13(6), 1397–1407. https://doi.org/10.5530/PJ.2021.13.177
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Singh, A. K., Kumar, A., Singh, R. P., Meena, R. S., & Behera, T. K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection.
Elfita, Munawar, Muharni, & Sudrajat, M. A. (2014). Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa). HAYATI Journal of Biosciences, 21(1), 15–20. https://doi.org/10.4308/hjb.21.1.15
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., & Setiawan, A. (2022). Antibacterial and antioxidant activity of endophytic fungi isolated from Peronema canescens leaves. Biodiversitas, 23(9), 4783–4792. https://doi.org/10.13057/biodiv/d230946
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., Setiawan, A., & Nasution, S. S. A. (2023). Bioactive Compounds of Endophytic Fungi Lasiodiplodia theobromae Isolated From The Leaves of Sungkai (Peronema canescens). Biointerface Research in Applied Chemistry, 13(6). https://doi.org/10.33263/BRIAC136.530
Ezeobiora, C. E., Igbokwe, N. H., Amin, D. H., & Mendie, U. E. (2021). Endophytic microbes from Nigerian ethnomedicinal plants: a potential source for bioactive secondary metabolites—a review. Bulletin of the National Research Centre, 45(1). https://doi.org/10.1186/s42269-021-00561-7
Farzana, M., Shahriar, S., Jeba, F. R., Tabassum, T., Araf, Y., Ullah, M. A., Tasnim, J., Chakraborty, A., Naima, T. A., Marma, K. K. S., Rahaman, T. I., & Hosen, M. J. (2022). Functional food: complementary to fight against COVID-19. Beni-Suef University Journal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00217-z
Fernando, K., Reddy, P., Guthridge, K. M., Spangenberg, G. C., & Rochfort, S. J. (2022). A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites, 12(1). https://doi.org/10.3390/metabo12010037
Filizola, P. R. B., Luna, M. A. C., De Souza, A. F., Coelho, I. L., Laranjeira, D., & Campos-Takaki, G. M. (2019). Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microbial Cell Factories, 18(1), 1–14. https://doi.org/10.1186/s12934-019-1108-y
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., & Neto, D. D. (2021). Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5), 1–28. https://doi.org/10.3390/pathogens10050570
García-Mier, L., Guevara-González, R. G., Mondragón-Olguín, V. M., Verduzco-Cuellar, B. del R., & Torres-Pacheco, I. (2013). Agriculture and bioactives: Achieving both crop yield and phytochemicals. International Journal of Molecular Sciences, 14(2), 4203–4222. https://doi.org/10.3390/ijms14024203
García, L. F. (2020). Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Frontiers in Immunology, 11(June), 4–8. https://doi.org/10.3389/fimmu.2020.01441
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1). https://doi.org/10.3390/nu12010236
Grabka, R., D’entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens. Plants, 11(3), 1–29. https://doi.org/10.3390/plants11030384
Hapida, Y., Elfita, Widjajanti, H., & Salni. (2021). Biodiversity and antibacterial activity of endophytic fungi isolated from jambu bol (Syzygium malaccense). Biodiversitas, 22(12), 5668–5677. https://doi.org/10.13057/biodiv/d221253
Hmamou, A., Eloutassi, N., Alshawwa, S. Z., Al Kamaly, O., Kara, M., Bendaoud, A., El-Assri, E. M., Tlemcani, S., El Khomsi, M., & Lahkimi, A. (2022). Total Phenolic Content and Antioxidant and Antimicrobial Activities of Papaver rhoeas L. Organ Extracts Growing in Taounate Region, Morocco. Molecules, 27(3), 1–12. https://doi.org/10.3390/molecules27030854
Hridoy, M., Gorapi, M. Z. H., Noor, S., Chowdhury, N. S., Rahman, M. M., Muscari, I., Masia, F., Adorisio, S., Delfino, D. V., & Mazid, M. A. (2022). Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules, 27(1). https://doi.org/10.3390/molecules27010296
Ikram, M., Ali, N., Jan, G., Hamayun, M., Jan, F. G., & Iqbal, A. (2019). Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiologiae Plantarum, 41(9). https://doi.org/10.1007/s11738-019-2957-z
Jean Maguire van Seventer, & Hochberg, N. S. (2017). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. International Encyclopedia of Public Health, 6(2), 22–39.
Karimi, E., Jaafar, H. Z. E., & Ahmad, S. (2011). Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of labisa pumila benth. Molecules, 16(6), 4438–4450. https://doi.org/10.3390/molecules16064438
Kim, K., Heo, Y. M., Jang, S., Lee, H., Kwon, S. L., Park, M. S., Lim, Y. W., & Kim, J. J. (2020). Diversity of Trichoderma spp. In marine environments and their biological potential for sustainable industrial applications. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104327
Konappa, N., Udayashankar, A. C., Dhamodaran, N., Krishnamurthy, S., Jagannath, S., Uzma, F., Pradeep, C. K., De Britto, S., Chowdappa, S., & Jogaiah, S. (2021). Ameliorated antibacterial and antioxidant properties by trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules, 11(4). https://doi.org/10.3390/biom11040535
Kusriani, R. H., Nawawi, A., & Turahman, T. (2015). Uji Aktivitas Antibakteri Ekstrak Dan Fraksi Kulit Batang Dan Daun Sungkai (Peronema Canescens Jack) Terhadap Staphylococcus Aureus Atcc 25923 Dan Escherichia Coli ATCC 25922. Jurnal Farmasi Galenika, 2(1), 8–14.
Li, Z., Wen, W., Qin, M., He, Y., Xu, D., & Li, L. (2022). Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Frontiers in Microbiology, 13(July). https://doi.org/10.3389/fmicb.2022.928967
Liu, X., Zhou, Z. Y., Cui, J. L., Wang, M. L., & Wang, J. H. (2021). Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Applied Microbiology and Biotechnology, 105(19), 7095–7113. https://doi.org/10.1007/s00253-021-11554-x
Llauradó Maury, G., Méndez Rodríguez, D., Hendrix, S., Escalona Arranz, J. C., Fung Boix, Y., Pacheco, A. O., García Díaz, J., Morris Quevedo, H. J., Ferrer Dubois, A., Isaac Aleman, E., Beenaerts, N., Méndez Santos, I. E., Orberá Ratón, T., Cos, P., & Cuypers, A. (2020). Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in cuba. Antioxidants, 9(11), 1–39. https://doi.org/10.3390/antiox9111048
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 14–16. https://doi.org/10.3390/molecules24224132
Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma and Clinical Immunology, 14(s2), 1–10. https://doi.org/10.1186/s13223-018-0278-1
Neamul Kabir Zihad, S. M., Hasan, M. T., Sultana, M. S., Nath, S., Nahar, L., Rashid, M. A., Uddin, S. J., Sarker, S. D., & Shilpi, J. A. (2022). Isolation and Characterization of Antibacterial Compounds from Aspergillus fumigatus: An Endophytic Fungus from a Mangrove Plant of the Sundarbans. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/9600079
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Hariani, P. L., & Hidayati, N. (2023a). Endophytic fungi isolated from the root bark of sungkai ( Peronema canescens ) as Anti-bacterial and antioxidant. Journal of Medical Pharmaceutical and Allied Sciences, 12(2320), 8–15. https://doi.org/10.55522/jmpas.V12I2.4925
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Mardiyanto, M., & Nasution, S. S. A. (2023b). Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from The Leaves of Sungkai (Peronema canescens). Tropical Journal of Natural Product Research, 7(3), 2596–2604. https://doi.org/http://www.doi.org/10.26538/tjnpr/v7i3.20
Oktiansyah, R., Widjajanti, H., Setiawan, A., Nasution, S. Sa. A., Mardiyanto, M., & Elfita. (2023c). Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens). Science and Technology Indonesia, 8(2), 170–177. https://doi.org/https://doi.org/10.26554/sti.2023.8.2.170-177 1.
Oktiansyah, R., Juliandi, B., Widayati, K. A., & Juniantito, V. (2018). Neuronal cell death and mouse (Mus musculus) behaviour induced by bee venom. Tropical Life Sciences Research, 29(2). https://doi.org/10.21315/tlsr2018.29.2.1
Omomowo, I. O., Fadiji, A. E., & Omomowo, O. I. (2020). Antifungal Evaluation and Phytochemical Profile of Trichoderma Harzianum and Glomus Versiforme Secondary Metabolites on Cowpea Pathogens. Asian Jr. of Microbiol. Biotech. Env. Sc., 22(2), 265–272.
Peng, X., Wu, B., Zhang, S., Li, M., & Jiang, X. (2021). Transcriptome Dynamics Underlying Chlamydospore Formation in Trichoderma virens GV29-8. Frontiers in Microbiology, 12(June), 1–23. https://doi.org/10.3389/fmicb.2021.654855
Pfannenstiel, B. T., Keller, N. P., States, U., & States, U. (2019). HHS Public Access. 37(6), 1–35. https://doi.org/10.1016/j.biotechadv.2019.02.001.On
Pitt, J. I., & Hocking, A. D. (2013). Fungi and Food Spolage. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).
Rahardjanto, A., Ikhtira, D. A., Nuryady, M. M., Pantiwati, Y., Widodo, N., & Husamah, H. (2021). The medicinal plant potential parts and species diversity as antipyretic: Ethnobotany study at Senduro Lumajang. AIP Conference Proceedings, 2353(May). https://doi.org/10.1063/5.0053124
Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S., Kumar Singh, S., & Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 00(00), 1–21. https://doi.org/10.1080/21501203.2020.1870579
Rashmi, M., & Venkateswara Sarma, V. (2018). Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression. 1–16. https://doi.org/10.1007/978-3-319-76900-4_20-1
Sharma, H., Rai, A. K., Dahiya, D., Chettri, R., & Nigam, P. S. (2021). Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiology, 7(2), 175–199. https://doi.org/10.3934/MICROBIOL.2021012
Singh, A., Singh, D. K., Kharwar, R. N., White, J. F., & Gond, S. K. (2021). Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms, 9(1), 1–42. https://doi.org/10.3390/microorganisms9010197
Sumilat, D. A., Lintang, R. A. J., Undap, S. L., Adam, A. A., & Tallei, T. E. (2022). Phytochemical, antioxidant, and antimicrobial analysis of Trichoderma asperellum isolated from ascidian Eudistoma sp. Journal of Applied Pharmaceutical Science, 12(4), 90–95. https://doi.org/10.7324/JAPS.2022.120410
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Tiwari, P., & Bae, H. (2020). Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. Plants, 9(3). https://doi.org/10.3390/plants9030305
Tiwari, P., & Bae, H. (2022). Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms, 10(2). https://doi.org/10.3390/microorganisms10020360
Tomas, M., Capanoglu, E., Bahrami, A., Hosseini, H., Akbari-Alavijeh, S., Shaddel, R., Rehman, A., Rezaei, A., Rashidinejad, A., Garavand, F., Goudarzi, M., & Jafari, S. M. (2022). The direct and indirect effects of bioactive compounds against coronavirus. Food Frontiers, 3(1), 96–123. https://doi.org/10.1002/fft2.119
Ty?kiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-?cise?, J. (2022). Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. International Journal of Molecular Sciences, 23(4). https://doi.org/10.3390/ijms23042329
Van de Vuurst, P., & Escobar, L. E. (2020). Perspective: Climate Change and the Relocation of Indonesia’s Capital to Borneo. Frontiers in Earth Science, 8(January), 1–6. https://doi.org/10.3389/feart.2020.00005
Vigneshwari, A., Rakk, D., Németh, A., Kocsubé, S., Kiss, N., Csupor, D., Papp, T., Škrbi?, B., Vágvölgyi, C., & Szekeres, A. (2019). Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE, 14(5), 1–16. https://doi.org/10.1371/journal.pone.0217060
Walsh, T. J., Hayden, R. T., & Larone, D. H. (2018). Larone’s Medically Important Fungi. In Larone’s Medically Important Fungi. https://doi.org/10.1128/9781555819880
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi. In Pictorial Atlas of Soil and Seed Fungi. https://doi.org/10.1201/ebk1439804193
Wen, J., Okyere, S. K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic Fungi: An Effective Alternative Source of Plant?Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2). https://doi.org/10.3390/jof8020205
Xia, Y., Liu, J., Chen, C., Mo, X., Tan, Q., He, Y., Wang, Z., Yin, J., & Zhou, G. (2022). The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms, 10(5), 1–19. https://doi.org/10.3390/microorganisms10051072
Xu, K., Li, X. Q., Zhao, D. L., & Zhang, P. (2021). Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. Frontiers in Microbiology, 12(June), 1–17. https://doi.org/10.3389/fmicb.2021.689527
Zeng, Y., Koh, L. P., & Wilcove, D. S. (2022). Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Science Advances, 8(22), 1–9. https://doi.org/10.1126/sciadv.abl9885
Zhao, J., Zhou, L., Wang, J., Shan, T., Zhong, L., Liu, X., & Gao, X. (2010). Endophytic fungi for producing bioactive compounds originally from their host plants. August 2015, 567–576.

Most read articles by the same author(s)

1 2 > >>