Diversity, bioactivity, and phytochemistry of endophytic fungi in various organs of nipa palm (Nypa fruticans) mangrove

##plugins.themes.bootstrap3.article.main##

SAKINAH SALMAN AHMAD NASUTION
ELFITA
HARY WIDJAJANTI
FERLINAHAYATI

Abstract

Abstract. Nasution SSA, Elfita, Widjajanti H, Ferlinahayati. 2024. Diversity, bioactivity, and phytochemistry of endophytic fungi in various organs of nipa palm (Nypa fruticans) mangrove. Biodiversitas 25: 3928-3942. Nipa palm (Nypa fruticans Wurmb), a traditional medicinal mangrove species, grows along the coastal areas of South Sumatra. This study explores the diversity of endophytic fungi isolated from the stem, frond, and mesocarp of N. fruticans. A total of eighteen fungal isolates were identified and tested for antioxidant and antibacterial activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and the disk diffusion method. Phytochemical profiles of these isolates were analyzed through thin layer chromatography (TLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among the isolates, Aspergillus niger (NfBa5, NfP7, and NfBu4), present in all organs, showed consistent antioxidant and antibacterial activities with similar major compounds across these isolates. Other endophytic fungi demonstrated significantly higher antioxidant and antibacterial activities compared to the host plant, highlighting their potential as promising sources of bioactive compounds. Despite some shared compound patterns, the fungal profiles differed from those of N. fruticans, underscoring the unique bioactive potential of endophytes. This study emphasizes the diversity of endophytic fungi in N. fruticans and reveals significant differences in their biological activities and phytochemical profiles compared to the host. These findings provide foundational insights for developing medicinal compounds from N. fruticans endophytic fungi for future pharmaceutical applications.

##plugins.themes.bootstrap3.article.details##

References
Abbas S, Shanbhag T, Kothare A. 2021. Applications of bromelain from pineapple waste towards acne. Saud J Biol Sci 28 (1): 1001-1009. DOI: 10.1016/j.sjbs.2020.11.032.
Aisyiyah IN, Rahmawati H, Agustini DM, Purbaya S, Aisyah LS, Yun YF. 2023. Antioxidant properties of the ethyl acetate extract of endophytic fungus Penicillium citrinum from Kalanchoe millotii stem through secondary metabolites. Al Kimiya 10 (2): 123-132. DOI: 10.15575/ak.v10i2.30323.
Akram S, Ahmed A, He P, He P, Liu Y, Wu Y, Munir S, He Y. 2023. Uniting the role of endophytic fungi against plant pathogens and their interaction. J Fungi 9: 72. DOI: 10.3390/jof9010072.
Alade GO, Moody JO, Awotona OR, Lai D, Adesanya SA, Proksch P. 2017. Cichorin A: A benzo-isochromene from Nypa fruticans endophytic fungus Pestalotiopsis sp. Herba Pol 63: 13-17. DOI: 10.1515/hepo-2017-0020.
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. 2023. Plant secondary metabolites: The weapons for biotic stress management. Metabolites 13 (6): 716. DOI: 10.3390/metabo13060716.
Astuti MD, Nisa K, Mustikasari K. 2020. Identification of chemical compounds from Nipah (Nypa fruticans Wurmb.) endosperm. BIO Web Conf 20: 03002. DOI: 10.1051/bioconf/20202003002.
Bisso BN, Njikang Epie Nkwelle R, Tchuenguem Tchuenteu R, Dzoyem JP. 2022. Phytochemical screening, antioxidant, and antimicrobial activities of seven underinvestigated medicinal plants against microbial pathogens. Adv Pharmacol Pharm Sci 2022: 1998808. DOI: 10.1155/2022/1998808.
Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. 2022. Role of promising secondary metabolites to confer resistance against environmental stresses in crop plants: Current scenario and future perspectives. Front Plant Sci 13: 881032. DOI: 10.3389/fpls.2022.881032.
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. 2023. Towards further understanding the applications of endophytes: Enriched source of bioactive compounds and bio factories for nanoparticles. Front Plant Sci 14: 1193573. DOI: 10.3389/fpls.2023.1193573.
Chugh RM, Mittal P, MP N, Arora T, Bhattacharya T, Chopra H, Cavalu S, Gautam RK. 2022. Fungal mushrooms: A natural compound with therapeutic applications. Front Pharm 13: 925387. DOI: 10.3389/fphar.2022.925387.
Das G, Shin HS, Ningthoujam SS, Talukdar AD, Upadhyaya H, Tundis R, Das SK, Patra JK. 2021. Systematics, phytochemistry, biological activities and health promoting effects of the plants from the subfamily Bombacoideae (Family Malvaceae). Plants 10 (4): 651. DOI: 10.3390/plants10040651.
Divekar PA, Narayana S, Divekar BA, Kumar R, Singh AK, Kumar A, Singh RP, Meena RS, Behera TK. 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Intl J Mol Sci 23: 2690. DOI: 10.3390/ijms23052690.
dos Reis JBA, Lorenzi AS, do Vale HMM. 2022. Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Arch Microbiol 204 (11): 675. DOI: 10.1007/s00203-022-03283-0.
Elfita, Muharni, Munawar, Aryani S. 2012. Secondary metabolite from endophytic fungi Aspergillus niger of the stem bark of Garcinia griffithii (Kandis gajah). Indonesian J Chem 12 (2): 195-200. DOI: 10.22146/ijc.21363.
Elfita, Munawar, Muharni, Sudrajat MA. 2014. Identification of new lactone derivatives isolated from Trichoderma sp., an endophytic fungus of Tinospora crispa (Brotowali). HAYATI J Biosci 21 (1): 15-20. DOI: 10.4308/hjb.21.1.15.
El-Zahar KM, Al-Jamaan ME, Al-Mutairi FR, Al-Hudiab AM, Al-Einzi MS, Mohamed AAZ. 2022. Antioxidant, antibacterial, and antifungal activities of the ethanolic extract obtained from Berberis vulgaris roots and leaves. Molecules 27: 6114. DOI: 10.3390/molecules27186114.
Fitri Y, Yusni Y, Suryadi T, Mudatsir M. 2023. Characteristics and bioactivity value of Nypa fruticans from the coastal area in West Aceh District, Indonesia, as a candidate antidiabetic agent. Biodiversitas 24 (10): 5260-5269. DOI: 10.13057/biodiv/d241006.
Genilar LA, Kurniawaty E, Azli R, Mokhtar M, Audah KA. 2021. Mangroves and their medicinal benefit: A mini review. Ann Rom Soc Cell Biol 25 (4): 695-709.
Hashem AH, Attia MS, Kandil EK, Fawzi MM, Abdelrahman AS, Khader MS, Khodaira MA, Emam AE, Goma MA, Abdelaziz AM. 2023. Bioactive compounds and biomedical applications of endophytic fungi: A recent review. Microb Cell Fact 22: 107. DOI: 10.1186/s12934-023-02118-x.
Hayat J, Akodad M, Moumen A, Baghour M, Skalli A, Ezrari S, Belmalha S. 2020. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from two different localities of Northeast Morocco. Heliyon 6: e05609. DOI: 10.1016/j.heliyon.2020.e05609.
Herningtyas W, Rahmila YI, Pujiono E. 2023. Mangrove plants as traditional medicine by local coastal communities in Indonesia. IOP Conf Ser: Earth Environ Sci 1266: 012006. DOI: 10.1088/1755-1315/1266/1/012006.
Ismed F, Desti WN, Arifa N, Rustini R, Putra DP. 2021. TLC-bioautographic and LC-MS/MS detection of antimicrobial compounds from four semipolar extracts of Cladonia species. Adv Health Sci Res 40: 49-59. DOI: 10.2991/ahsr.k.210712.008.
Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, Malik T. 2023. Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front Microbiol 14: 1227830. DOI: 10.3389/fmicb.2023.1227830.
Khairunnisa C, Thamrin E, Prayogo H. 2020. Keanekaragaman jenis vegetasi mangrove di Desa Dusun Besar Kecamatan Pulau Maya Kabupaten Kayong Utara. Jurnal Hutan Lestari 8 (2): 325-336. DOI: 10.26418/jhl.v8i2.40074. [Indonesian]
Kumar M, Saurabh V, Tomar M, Hasan M, Changan S, Sasi M, Maheshwari C, Prajapati U, Singh S, Prajapat RK, Dhumal S, Punia S, Amarowicz R, Mekhemar M. 2021. Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants 10: 299. DOI: 10.3390/antiox10020299.
Kusmana C, Sukristijiono S. 2016. Mangrove resource uses by local community in Indonesia. J Nat Resour Environ Manage 6 (2): 217-224. DOI: 10.19081/jpsl.2016.6.2.217.
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. 2022. Biological control of plant pathogens: A global perspective. Microorganisms 10 (3): 596. DOI: 10.3390/microorganisms10030596.
Latgé JP, Chamilos G. 2020. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev 33: e00140-18. DOI: 10.1128/cmr.00140-18.
Manickam S, Rajagopalan VR, Kambale R, Rajasekaran R, Kanagarajan S, Muthurajan R. 2023. Plant metabolomics: Current initiatives and future prospects. Curr Issues Mol Biol 45 (11): 8894-8906. DOI: 10.3390/cimb45110558.
Mapfumari S, Nogbou ND, Musyoki A, Gololo S, Mothibe M, Bassey K. 2022. Phytochemical screening, antioxidant, and antibacterial properties of extracts of Viscum continuum E. Mey. Ex Sprague, a South African mistletoe. Plants 11 (16): 2094. DOI: 10.3390/plants11162094.
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O’Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. 2024. Functional traits of fossil plants. New Phytol 242 (2): 392-423. DOI: 10.1111/nph.19622.
Mehmood A, Javid S, Khan MF, Ahmad KS, Mustafa A. 2022. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem 16: 64. DOI: 10.1186/s13065-022-00858-2.
Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. 2016. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol 2 (1): 36-42. DOI: 10.18869/acadpub.cmm.2.1.36.
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. 2022. Transcriptional activation of biosynthetic gene clusters in filamentous fungi. Front Bioeng Biotechnol 10: 901037. DOI: 10.3389/fbioe.2022.901037.
Muharni, Elfita E, Yohandini H, Valenta C. 2020. Comparison of extraction methods for evaluating antioxidant and antibacterial properties of Vernonia amygdalina leaves extract. Mediterr J Chem 10 (8): 775. DOI: 10.13171/mjc10802009101498mm.
Muhtadi A, Harahap ZA, Pulungan A, Siregar Z, Simaremare ER, Rahmawati A, Nazara W, Khairunnisa. 2023. Distribution and ecological status of mangroves in the Nias Islands-North Sumatra Province. J Aquat Fish Sci 2 (2): 60-72. DOI: 10.32734/jafs.v2i2.12757.
Mundim GdeSM, Maciel GM, Mendes GdeO. 2022. Aspergillus niger as a biological input for improving vegetable seedling production. Microorganisms 10: 674. DOI: 10.3390/microorganisms10040674.
Nugroho GD, Wiraatmaja MF, Pramadaningtyas PS, Febriyanti S, Liza N, Naim MD, Ulumuddin YI, Setyawan AD. 2022. Review: Phytochemical composition, medicinal uses and other utilization of Nypa fruticans. Intl J Bonorowo Wetlands 10 (1): 51-65. DOI: 10.13057/bonorowo/w100105.
Oktiansyah R, Widjajanti H, Setiawan A, Nasution SS, Mardiyanto M, Elfita. 2023. Antibacterial and antioxidant activity of endophytic fungi extract isolated from leaves of Peronema canescens (Sungkai). Sci Technol Indones 8: 170-177. DOI: 10.26554/sti.2023.8.2.170-177.
Pescador L, Fernandez I, Pozo MJ, Romero-Puertas MC, Pieterse CMJ, Martínez-Medina A. 2022. Nitric oxide signaling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. J Exp Bot 73 (2): 584-595. DOI: 10.1093/jxb/erab294.
Prasad N, Yang B, Kong KW, Khoo HE, Sun J, Azlan A, Ismail A, Romli ZB. 2013. Phytochemicals and antioxidant capacity from Nypa fruticans Wurmb. fruit. Evid Based Complement Alternat Med 2013: 154606. DOI: 10.1155/2013/154606.
Priyashantha AKH, Dai DQ, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. 2023. Plant-fungi interactions: Where it goes?. Biol 12: 809. DOI: 10.3390/biology12060809.
Rahardjanto A, Ikhtira DA, Nuryady MM, Pantiwati Y, Widodo N, Husamah H. 2021. The medicinal plant potential parts and species diversity as antipyretic: Ethnobotany study at Senduro Lumajang. AIP Conf Proc 2353. DOI: 10.1063/5.0053124.
Rahayu SM, Sunarto. 2020. Mangrove plants use as medicine in Gedangan Village, Purwodadi District, Purworejo Regency, Central Java Province. Jurnal Jamu Indonesia 5 (2): 76-84. DOI: 10.29244/jji.v5i2.116.
Rahimi NN, Ikhsan NFM, Loh JY, Ranzil FKE, Gina M, Lim SHE, Lai KS, Chong CM. 2022. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics 11 (4): 469. DOI: 10.3390/antibiotics11040469.
Rai S, Singh LS, Shaanker RU, Jeyaram K, Parija T, Sahoo D. 2024. Endophytic fungi of Panax sokpayensis produce bioactive ginsenoside compound K in flask fermentation. Sci Rep 14 (1): 9318. DOI: 10.1038/s41598-024-56441-3.
Rehman B, Khan SA, Hamayun M, Iqbal A, Lee IJ. 2022. Potent bioactivity of endophytic fungi isolated from Moringa oleifera leaves. Biomed Res Intl 2022: 2461021. DOI: 10.1155/2022/2461021.
Roy M, Liang L, Xiao X, Feng P, Ye M, Liu J. 2018. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed Pharmacother 107: 615-624. DOI: 10.1016/j.biopha.2018.07.147.
Salam U, Ullah S, Tang ZH, Elateeq AA, Khan Y, Khan J, Khan A, Ali S. 2023. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 13 (3): 706. DOI: 10.3390/life13030706.
Shen K, Xiong Y, Liu Y, Fan X, Zhu R, Hu Z, Li C, Hua Y. 2024. Community structure and diversity of endophytic fungi in cultivated Polygala crotalarioides at two different growth stages based on culture-independent and culture-based methods. J Fungi 10 (3): 195. DOI: 10.3390/jof10030195.
Silva PV, Pereira LM, de Souza Marques Mundim G, Maciel GM, de Araújo Gallis RB, de Oliveira Mendes G. 2022. Field evaluation of the effect of Aspergillus niger on lettuce growth using conventional measurements and a high-throughput phenotyping method based on aerial images. PLoS One 17 (9): e0274731. DOI: 10.1371/journal.pone.0274731.
Singh VK, Kumar A. 2023. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 90 (2): 111-125. DOI: 10.1007/s13199-023-00925-9.
Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, Aroyehun AB. 2021. Chemical profile, antioxidant properties and antimicrobial activities of Malaysian Heterotrigona itama bee bread. Molecules 26 (16): 4943. DOI: 10.3390/molecules26164943.
Taylor JT, Harting R, Shalaby S, Kenerley CM, Braus GH, Horwitz BA. 2022. Adhesion as a focus in Trichoderma-root interactions. J Fungi 8 (4): 371. DOI: 10.3390/jof8040372.
Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P. 2024. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Sci Rep 14 (1): 588. DOI: 10.1038/s41598-023-51057-5.
Tresnati J, Aprianto R, Tuwo A. 2021. Ecosystem and sustainable use of mangrove forests. Integrated Publications, New Delhi.
van Hespen R, Hu Z, Borsje BW, Bouma TJ, Friess DA, Jevrejeva S, Kleinhans MG, Maza M, De Dominicis M. 2023. Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Sci Eng 16 (1): 1-13. DOI: 10.1016/j.wse.2022.10.004.
Vaou N, Stavropoulou E, Voidarou CC, Tsakris Z. 2022. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 11: 1014). DOI: 10.3390/antibiotics11081014.
Walsh TJ, Hayden RT, Larone DH. 2018. Larone’s Medically Important Fungi: A Guide to Identification. 6th Edition. ASM Press, Washington DC. DOI: 10.1128/9781555819880.
Wang X, Lu Y, Shaaban KA, Wang G, Xia X, Zhu Y. 2022. Editorial: Bioactive natural products from microbes: Isolation, characterization, biosynthesis, and structure modification. Front Chem 10: 883652. DOI: 10.3389/fchem.2022.883652.
Watanabe T. 2010. Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species. 3rd Edition. CRC Press, Boca Raton.
Wei L, Zhang Q, Xie A, Xiao Y, Guo K, Mu S, Xie Y, Li Z, He T. 2022. Isolation of bioactive compounds, antibacterial activity, and action mechanism of spore powder from Aspergillus niger xj. Front Microbiol 13: 934857. DOI: 10.3389/fmicb.2022.934857.
Wen J, Okyere SK, Wang J, Huang R, Wang Y, Liu L, Nong X, Hu Y. 2023. Endophytic fungi isolated from Ageratina adenophora exhibits potential antimicrobial activity against multidrug-resistant Staphylococcus aureus. Plants 12 (3): 650. DOI: 10.3390/plants12030650.
Wijesekara T, Xu B. 2023. Health-promoting effects of bioactive compounds from plant endophytic fungi. J Fungi 9 (10): 997. DOI: 10.3390/jof9100997.
Witasari LD, Wahyu KW, Anugrahani BJ, Kurniawan DC, Haryanto A, Nandika D, Karlinasari L, Arinana A, Batubara I, Santoso D, Rachmayanti Y, Firmansyah D, Sudiana IK, Hertanto DM. Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. AMB Express 12: 14. DOI: 10.1186/s13568-022-01359-0.
Yu R, Liu J, Wang Y, Wang H, Zhang H. 2021. Aspergillus niger as a secondary metabolite factory. Front Chem 9: 701022. DOI: 10.3389/fchem.2021.701022.
Zeng Y, Koh LP, Wilcove DS. 2022. Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Sci Adv 8 (22): eabl9885. DOI: 10.1126/sciadv.abl9885.

Most read articles by the same author(s)

1 2 > >>